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Abstract

Heat transfer and nucleation processes in nucleate boiling strongly depend on the phase equilibrium at the liquid–

vapour interface. In a certain region between heated wall and a vapour bubble where a thin liquid film is adsorbed,

phase equilibria are considerably influenced by dispersion forces acting on the liquid film. As shown in the paper in such

systems the chemical potential, decisive for phase equilibria between liquid films and their vapour, contains an addi-

tional term for the action of dispersion forces, and differs from the chemical potential of dispersion-free systems, though

their chemical potential is usually taken in the literature for systems with dispersion forces. With the aid of the chemical

potential the Kelvin equations for the pressures at the liquid–vapour interface were derived. It turned out that the Gibbs

assumption of a geometrical interface between extremely thin liquid films in equilibrium with its vapour does not hold.

Instead, following the ideas of van der Waals junior, the small but finite transition interlayer between both phases had

to be introduced.

As numerical examples illustrate, the dispersion forces considerably influence the pressures at the liquid–vapour

interface. In nucleate boiling processes the driving pressure difference for evaporation undergoes a maximum within a

tiny area underneath vapour bubbles. As could be shown the maximum driving pressure difference between gas-side

interface and gas-core is a considerable fraction of the vapour pressure itself and contributes significantly to the high

heat fluxes in nucleate boiling.

� 2002 Published by Elsevier Science Ltd.
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1. Introduction

Microscale heat and mass transfer in nucleate boiling

strongly depends on vapour–liquid phase equilibria of a

thin liquid film adsorbed between the heated wall and

the vapour bubble as first pointed out by Stephan and

Hammer [1]. As an example, in Fig. 1 the curved line

represents the interface between a vapour bubble and

the liquid layer at a heated wall. In the so-called macro-

region the interface has an almost constant curvature K

corresponding to the bubble radius rB, K ¼ 2=rB. In the

micro-region the curvature of the interface sharply turns

and ends in a non-evaporating liquid film adsorbed at

the wall, the curvature being there K ¼ 0. In this ad-

sorbed film, in the so-called adhesion zone between wall

and liquid film, attractive forces inhibit evaporation. In

the micro-region between macro-region and the ad-

sorbed film the curvature of the liquid–vapour interface

undergoes a steep maximum, which for example for re-

frigerant R114 of 0.247 MPa boiling at a wall super-

heated by 5 K, amounts to Kmax � 107 m�1. The

curvature varies over a small distance of about 0.1 lm

between that of the adsorbed film K ¼ 0, the maximum

value Kmax � 107 m�1 in the micro-region and an almost

constant value K � 103 m�1 in the macro-region, thus

leading to extremely high capillary forces, a strong liquid

flow towards the interface, and hence in the thin liquid

film to extreme high heat fluxes of up to 107 W/m2 [1–6].
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Phase equilibria at the liquid–vapour interface are

different from those at plane interfaces free of dispersion

forces for three reasons:

(i) The capillary forces due to the strong change in

curvature in the micro-region also enhance the in-

terface temperature TPh. The superheat over satura-

tion temperature of a plane interface necessary for

evaporation of the curved interface increases with

capillary pressure.

(ii) Because of the thin liquid film in the micro-region

the temperature drop TW � TPh between wall and

gas–liquid interface can be as small or even smaller

than the temperature drop TPh � TG between gas–

liquid interface and gas-core. The molecular kinetic

resistance at the liquid–vapour interface has to be

taken into account.

(iii) In the adhesion zone and the micro-region long

range interaction forces, so called dispersion forces,

between solid wall and the molecules of the thin liq-

uid film rise the temperature TPh at the interface.

Because of the variation of curvature KðnÞ and film

thickness dðnÞ the interface temperature TPh is not con-

stant but a function of the radial co-ordinate n. We can

Nomenclature

A Hamaker constant (J)

Adisp dispersion constant ðJÞ ¼ A=6p
E energy (J)

eg unit vector in direction g
Fdisp dispersion force (N)

F disp molar dispersion force (N mol�1)

f body force per volume (N m�3), condensa-

tion coefficient (–)

f � body force per mass (N kg�1)

g gravity (m s�2)

H height (m)

K curvature (m�1)

L length (m)

M molar mass (kg kmol�1)

NA Avogadro number (mol�1)

n mole number (mol)

p pressure (N m�2)

_qq heat flux (W m�2)

R gas constant (J kg�1 K�1)

Rm universal gas constant (J mol�1 K�1)

r radius, radial co-ordinate (m)

S entropy (J K�1)

S molar entropy (J mol�1 K�1)

T Temperature (K)

V volume (m3)

V molar volume (m3 mol�1)

W work (N)

w interaction pair potential (J)

n co-ordinate (m)

g co-ordinate (m)

q density (kg m�3)

q1, q2 number density (m�3) of species 1 and 2

l chemical potential (J mol�1)

r surface tension (N m�1)

d film thickness (m)

Subscripts

ad adsorption

B bubble

disp dispersion

G gas

hydr hydrodynamical

L Liquid

mic micro-region

Ph at interface

Ph, L on liquid side of the interface

Ph, G on gas side of the interface

SL interaction of solid with liquid

S, L, G interaction of solid with gas across liquid

S, Lr, G interaction of solid with gas across liquid

and r-phase

S, L, rG interaction of solid with r- and gas-phase

across liquid

sat saturation

W wall

g in direction g
r interface between liquid and gas

Fig. 1. Liquid film between vapour bubble and heated wall: (––)

region of strong influence and (- - -) region of weak influence.
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therefore state, as shown in Fig. 2, that the temperature

drop TPh � Tsat is considerable, and thus the driving

temperature difference TW � TPh for heat transfer is

smaller than TW � Tsat of a plane film, when the disper-

sion forces and intermolecular resistance are negligible.

The smaller temperature difference TW � TPh compared

to TW � Tsat reduces the heat flux. This reduction in the

micro-region, however, is partly compensated by the

much smaller thermal resistance of the thin liquid film.

Basic and pioneering theoretical and experimental

studies of evaporating thin liquid films were mainly

performed by Wayner and coworkers. A concise review

of their research is given by Wayner [7,8]. As shown by

them the assumption of a constant interface tempera-

ture TPh and also a constant curvature K ¼ const in the

micro-region does not hold.

It is obvious that the liquid–vapour phase change is

of fundamental interest and of practical significance in

nucleate boiling heat transfer.

A useful tool for the study of phase equilibria is the

Kelvin equation, which shall be presented here for pure

substances. Its derivation is usually based on the as-

sumption of a fluid with ideal vapour and an incom-

pressible liquid phase. Intermolecular forces between

solid and liquid are not taken into account. In our case

we also assume an ideal vapour and an incompressible

liquid. However, because of the presence of dispersion

forces the intermolecular forces between solid and liquid

must be taken into account. They add to the capillary

forces. Furthermore the temperature rises at the liquid–

vapour interface because of the molecular kinetic resis-

tance. Both effects cause a shift in the chemical potential,

which shall be discussed in this paper. Then, with the aid

of the Kelvin equation, deduced from the chemical

potential, the variation of pressures in the liquid and

vapour phase, as they occur in nucleate boiling when

vapour bubbles exist at solid walls, will be studied.

2. The nature of dispersion forces

The adhesion or dispersion forces between the solid

wall and the liquid film can be attractive or repulsive. As

long range forces they can be effective from distances of

interatomic spacing in the liquid film of about 0.2 nm to

distances of some 10 nm. As Israelachvili [9] pointed out

they are quantum mechanical in origin, and are present

even if molecules are non-polar. Though the time aver-

age dipole of these molecules vanishes there exists a fi-

nite dipole moment given by the instantaneous position

of the electron around the protons. These instantaneous

dipoles generate an electric field inducing a dipole mo-

ment in any nearly neutral atoms giving rise to an in-

stantaneous attractive force between the atoms. The

time average of this force is finite. Attractive forces

mainly determine the boiling point and the heat of va-

porisation of a substance, hence their importance when

studying boiling processes.

Dispersion forces were intensively studied by Israe-

lachvili [9] and in earlier papers by Derjaguin [10–12],

who developed a model to convert these forces into a

liquid pressure. The dispersion forces lead to an addi-

tional pressure pdisp in the liquid film, which under the

assumption of an interaction pair potential w ¼ �C=rn

with coefficient C describing the interaction between two

molecules and for example n ¼ 6 for van der Waals

forces becomes [9]

pdisp ¼ Adisp=g
3; ð1Þ

where g is the distance between a certain position within

the liquid and an infinitely extended solid surface. The

dispersion constant describing the interaction between

two bodies 1 and 2 is defined as

Adisp ¼ pCq1q2=6: ð2Þ

q1 and q2 are the number densities of molecules in the

interacting bodies, and coefficient C describes the in-

teraction between the atoms in the bodies. Instead of the

dispersion constant Adisp the Hamaker constant A, after

Hamaker [13], who did earlier studies to explore the

forces between macroscopic bodies, is often used in the

literature,

A ¼ 6pAdisp: ð3Þ

As shown by Lifshitz [14], Hamaker constants of van der

Waals forces and hence dispersion constants can be

calculated from bulk properties such as dielectric con-

stants and refractive indices. The essential equations are

reviewed in the book of Israelachvili [9].

Fig. 2. Temperature differences in the micro-region, R114 at

psat ¼ 0:247 MPa, Tsat ¼ 302:63 K, TW ¼ 307:63 K.
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3. The chemical potential of a system with dispersion

forces

With the aid of dispersion forces we can now proceed

to determine the chemical potential of a homogeneous

bulk phase, for instance the liquid phase in Fig. 3. In all

the literature known to the author, it is taken from the

Gibbs–Duhem equation

dl ¼ �S dT þ V dp; or from

dl ¼ �S dT þ V dp þM~ggdr

if gravity is not negligible. Quantities with an overbar

represent molar quantities: Sðp; T Þ are the molar entropy

and V ðp; T Þ the molar volume. If the above equations

for the chemical potential were correct then according to

the thermal equation of state V ðp; T Þ or p ¼ pðq; T Þ
where q is the density, for an incompressible fluid the

pressure inside the fluid would only be a function of

temperature. This is correct when dispersion forces are

absent, but does not hold when they are not negligible.

As we saw before, Eq. (1) then the dispersion pressure

becomes important, depending on the distance between

fluid and the solid surface. We should therefore expect

p ¼ pðq; T ;~rrÞ, where~rr stands for the distance, and hence

a chemical potential l ¼ lðp; T ;~rrÞ and not l ¼ lðp; T Þ
as in the above equation.

In order to derive the correct chemical potential of

the liquid phase we start from the Gibbs function

E ¼ EðS; V ;~rr; nÞ ð4Þ

with entropy S, volume V, co-ordinate ~rr in the liquid

and the mole number n. From Eq. (4) we obtain

dE ¼ T dS � pdV �~FFdispd~rr þ ldn ð5Þ

with

~FFdisp :¼ �ðoE=o~rrÞS;V;n ¼ ~FFdispðS; V ; r
*
; nÞ:

Temperature T, pressure p, and chemical potential l are

defined as partial derivatives of E, T ¼ oE=oS,

p ¼ �oE=oV , l ¼ oE=on, but now depend on S, V,~rr, n.

Strictly speaking, ~FFdisp stands here for all forces acting on

the system. For reasons of simplicity we disregard all

other forces except for the dispersion forces as the most

important forces for evaporation of thin liquid films.

Because the Gibbs function E, Eq. (4), is a homo-

geneous function of first order in the variables S, V, n its

Euler-equation reads

E ¼ TS � pV þ ln: ð6Þ

From this we have

dE ¼ T dS þ S dT � pdV � V dp þ ldnþ ndl:

Together with Eq. (5) we obtain the Gibbs–Duhem

equation

S dT � V dp þ~FFdispd~rr þ ndl ¼ 0: ð7Þ

The chemical potential lðT ; p; r*Þ of the pure liquid

therefore is given by

dl ¼ �S dT þ V dp �~FF dispd~rr; ð8Þ

where S, V and ~FF disp again represent molar quantities.

4. Dispersion forces and phase equilibria

Different from the chemical potential dl ¼ �S dT þ
V dp in the absence of dispersion forces, Eq. (8) contains

the term ~FF disp d~rr of the molar dispersion force ~FF disp. Its

quantity can be derived from the interaction energy of

dispersion. In the case of two planar surfaces at a dis-

tance~rr ¼ geg apart, one of unit area and infinite depth,

for example a liquid and the other infinitely large, for

example a solid wall, we have, as shown by Israelachvili

[9, p. 158], the dispersion energy,

W ðgÞ ¼ �pCq1q2=12g2; ð9Þ

where C comes from the interaction pair potential

w ¼ �C=rn with n ¼ 6, and q1, q2 again are the number

densities of solid and liquid. The dispersion force fdisp;g

per unit surface is given by

fdisp;gðgÞ ¼ � oW
og

¼ �pCq1q2=6g3 ¼ �Adisp=g
3: ð10Þ

The dispersion force fdisp;g ðgÞ between two bodies,

for example a solid wall and a liquid, as shown in Fig. 3

is the resultant of all body forces due to dispersion

acting on the liquid column and directed against the co-

ordinate g. Because of the equilibrium of all forces

acting on the liquid column at rest the force fdisp;g is

balanced by an external pressure, the so-called disper-

sion pressure defined as

pdisp :¼ �fdisp;g ¼ Adisp=g
3: ð11Þ

The dispersion pressure acts in a similar way as the

hydrostatic pressure phydr. Both pressures balance outFig. 3. Dispersion forces acting on a liquid volume of unit area.
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body forces, the dispersion pressure those of molecular

origin, the hydrostatic pressure those of gravity.

However, different from the hydrostatic pressure

which decreases linearly with height g according to

ophydr=og ¼ �qLg, the dispersion pressure decreases

much faster with 1=g3 as can be seen from Eq. (11), and

we have opdisp=og ¼ �pCq1q2=2g4. The dispersion pres-

sure tends to zero mostly after distances g above 100 nm,

depending on the substances involved.

We consider now the momentum balance of a fluid

volume element dV ¼ Adg, where A is the surface area,

replacing the unit area of Fig. 3. The momentum bal-

ance reads

qLf
�
disp;g ¼

opdisp

og
; ð12Þ

where f �
disp;g stands for the body force per mass (SI-unit

N/kg) acting on the volume element. Because of

Z
V

qLf
�
disp;g dg ¼

Z
V
ðopdisp=ogÞdg ¼

Z
A
pdisp dA

in the limit V ! 0 the volume integral disappears much

faster than the surface integral, we have in any cross

section
R
A pdisp dA ¼ 0. Dispersion forces in any cross

section are opposed to each other and cancel. They be-

have in the same way as hydrostatic forces which also

cancel over a surface.

With Eq. (11) we obtain

f �
disp;g ¼ vL

opdisp

og
¼ �vL

3Adisp

g4
: ð13Þ

The molar body force F disp;g (SI-unit N/mol) is

F disp;g ¼ V L

opdisp

og
¼ �V L

3Adisp

g4
: ð14Þ

From this we obtain

F disp;g dg ¼ V L

opdisp

og
dg ¼ V Ldpdisp: ð15Þ

Keeping in mind that Adisp ¼ pCq1q2=6 contains in

the case of a liquid–solid interaction the liquid number

density q1 ¼ qL ¼ dNL=dVL ¼ NAdnL=dVL ¼ NA=V L with

the Avogadro number NA and the solid number density

q2 the molar body force can be rewritten

F disp;g ¼ � pCNAq2

2g4
: ð16Þ

If gravity plays a role in addition to the dispersion

forces the momentum balance becomes qLfg ¼ qLðfg;g þ
f �

disp;gÞ ¼ opL=og with gravity fg;g ¼ �g and f �
disp;g from

Eq. (13). In the liquid film 06 g6 d gravity is however

mostly negligible as we can see from the ratio of dis-

persion forces and gravity

f �
disp;g

fg;g
¼ vLpCq1q2

2g4g
¼ 3Adisp

g4qLg
P

3Adisp

d4qLg
ffi 3:6 
 107:

As an example we used herein the values Adisp ¼
8:69 
 10�21 J for solid–liquid interaction, qL ¼ 1441 kg/

m3, film thickness g ¼ d ¼ 15 nm for refrigerant R114 at

saturation pressure of 0.247 MPa corresponding to a

saturation temperature of 302.63 K.

4.1. The Young–Laplace equation

The assumptions made in our model are

– The gaseous phase obeys the equation of state of an

ideal gas. Then interactions between gas-molecules

disappear.

– The system studied here consists of a solid wall wetted

by an extremely thin liquid film in equilibrium with its

vapour phase. Because of the thin liquid film we can-

not a priori accept the Gibbs assumption according to

which the interlayer between gas and liquid is a geo-

metrical surface. Its thickness can be of the same

order as that of the liquid film.

Molecular dynamics simulation [15] of the liquid–

vapour interface of a Lennard-Jones fluid with real

gaseous phases has indeed shown that the thickness of

the interlayer is of the order of a few Nanometers. When

the gaseous phase may be considered as ideal the inter-

facial thickness comes close to 1 nm. Of the same order

of magnitude are liquid films in the micro-region, so that

the Gibbs-assumption according to which the thickness

of the interlayer is negligible compared to that of the

liquid film, at least in some parts of the micro-region

does not hold.

In order to derive the Young–Laplace equation de-

scribing the mechanical equilibrium in such a system we

consider, as shown in Fig. 4a, two homogeneous bulk

phases consisting of liquid L and gas G, connected by an

interface layer r, having for the sake of simplicity the

form of a circular cylindrical shell element of arc length

rdu, depth L and of thickness Dr. Then the forces rL
exerted by surface tension r act upon the side edges of

depth L. Their resultant is given by dFR ¼ rLdu. Also

of importance are the forces resulting from gas and

liquid pressures and from dispersion. The force balance

is given by

pL � ðr þ DrÞ � duLþ dFR ¼ pGrduLþ dFdisp: ð17Þ

The dispersion forces act as body forces upon the cy-

lindrical shell, and are equal to the difference

dFdisp ¼ ðpdisp;Ph;L � pdisp;Ph;GÞrduL

of the dispersion pressure forces on both sides of the

interface. With this the force balance reads

K. Stephan / International Journal of Heat and Mass Transfer 45 (2002) 4715–4725 4719



pL � ðr þ DrÞ � duLþ rduL

¼ pGrduLþ ðpdisp;Ph;L � pdisp;Ph;GÞrduL;

or because of Dr � r;

pL þ r
r
¼ pG þ pdisp;Ph;L � pdisp;Ph;G: ð18Þ

For a surface with mean curvature K ¼ 1=r1 þ 1=r2,

as shown in Fig. 4b, the equivalent balance reads

pL þ rK ¼ pG þ pdisp;Ph;L � pdisp;Ph;G: ð19Þ

This is the Young–Laplace equation for a system

with dispersion forces. For a Gibbs interface, because of

Dr ¼ 0 and hence pdisp;Ph;L ¼ pdispPh;G converts into the

well known form of the Young–Laplace equation for a

system without dispersion forces pL þ rK ¼ pG.

It is noteworthy that in all references known to the

author Eq. (19) is pretended to write

pL þ rK ¼ pG � pdisp:

Different from Eq. (19) the dispersion pressure does not

disappear at a Gibbs interface.

In Eq. (19) the location of pdispPh;L in cylinder co-

ordinates is at position u, r1 þ Dr or in Cartesian co-

ordinates at n, d (see Fig. 4b). The cylinder co-ordinates

of pdisp;Ph;G are u, r1 and its Cartesian co-ordinates

n � Dr1 sin u, d þ Dr cos u. With this the dispersion

pressures in the Cartesian co-ordinate system are

pdisp;Ph;L ¼ Adisp;Ph;L=d
3 and pdisp;Ph;G

¼ Adisp;Ph;G=ðd þ Dr cos uÞ3: ð20Þ

The dispersion force leading to the pressure pdisp;Ph;L

is caused by the interaction of the solid wall S with the r-

and the gas-phase G across the liquid film L. Following

the notation of Israelachvili [9] the corresponding dis-

persion constant for the interaction can be written

Adisp;Ph;L ¼ AS;L;rG=6p. For the interaction of the solid

wall S with the gas G across the liquid L and the r-phase

we have Adisp;Ph;G ¼ AS;Lr;G=6p. Approximate combining

rules for the Hamaker constants were given for example

by Israelachvili [9] and can be written in the following

form

Adisp;Ph;L6p ¼ AS;L;rG

�
ffiffiffiffiffiffiffi
ASS

p�
�

ffiffiffiffiffiffiffiffi
ALL

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
ArG;rG

p�
�

ffiffiffiffiffiffiffiffi
ALL

p �
ð21Þ

and

Adisp;Ph;G6p ¼ AS;Lr;G

�
ffiffiffiffiffiffiffi
ASS

p�
�

ffiffiffiffiffiffiffiffiffiffiffiffi
ALr;Lr

p � ffiffiffiffiffiffiffiffiffi
AGG

p�
�

ffiffiffiffiffiffiffiffiffiffiffiffi
ALr;Lr

p �
:

ð22Þ

Herein the Hamaker constants Aii are those of two

dielectric or electrically non-conducting media i inter-

acting across vacuum. They are given by the Lifshitz

theory see [9, Eq. (11.14)]

Aii ¼
3

4
kT

ei � 1

ei þ 1

� �2

þ 3hme

16
ffiffiffi
2

p ðn2
i � 1Þ2

ðn2
i þ 1Þ3=2

; ð23Þ

where ei is the dielectric constant of medium i, ni its

refractive index in the visible, k is the Boltzmann con-

stant, h the Planck constant and me the Plasma frequency

of the free electron. In nucleate boiling processes the

solid wall is mostly a metal. For two metals interacting

across vacuum the Hamaker constant is ASS � 4 
 10�19

J [9]. The Hamaker constants AS;L;rG and AS;Lr;G are both

negative, because of ASS � ALr;Lr � ALL, ALL � ArG;rG

and AGG � 0. The negative sign is in agreement with the

usually adopted sign convention according to which

attractive forces are negative and repulsive forces posi-

tive. As follows then from the definition Eq. (11), dis-

Fig. 4. Mechanical equilibrium between liquid L, gas G and r-phase: (a) cylinder and (b) main curvatures r1, r2.
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persion pressures due to attractive forces are posi-

tive and those due to repulsive forces negative. The in-

teraction forces between a solid wall and a wetting liquid

surpass those between solid wall and gas- or r-phase.

The gas- and r-phase are kept away from the solid

wall through the liquid, an effect which is reflected in

negative values of the Hamaker constants AS;L;rG and

AS;Lr;G.

4.2. The Kelvin equation

With Eq. (15) the chemical potential Eq. (8) of a

system with dispersion forces can be written

dl ¼ �S dT þ V dp � V dpdisp: ð24Þ

Hence the chemical potential is l ¼ lðT ; p; pdispÞ. Strictly

speaking a gravity term M~ggd~rr should also appear in Eq.

(24). As we are interested in phase equilibria this term

appears, however, in the chemical potential of all phases

in equilibrium and therefore cancels. We can leave it out

here.

We consider now (Fig. 5) an element dn of a curved

liquid film L of thickness dðnÞ in phase equilibrium

with its vapour G and the r-phase between liquid and

vapour. The temperature at the interfaces and in the r-

phase be TPhðnÞ, the liquid-side pressure pPh;L and the

gas-side pressure pPh;G Phase equilibrium requires

lLðTPh; pPh;L; g ¼ dÞ ¼ lGðTPh; pPh;G; g ¼ d þ Dr cos uÞ:
ð25Þ

The condition for phase equilibrium at temperature TPh

of the same substance if it had a plane interface and if

dispersion forces were negligible would be

lLðTPh; psat; g ! 1Þ ¼ lGðTPh; psat; g ! 1Þ: ð26Þ

From that follows psat ¼ psatðTPhÞ. From Eqs. (25) and

(26) we obtain

lLðTPh; pPh;L; g ¼ dÞ � lLðTPh; psat; g ! 1Þ
¼ lGðTPh; pPh;G; g ¼ d þ Dr cos uÞ
� lGðTPh; psat; g ! 1Þ

and hence from Eq. (24) for a given interface tempera-

ture TPh:Z pPh;L

psat

V L dp �
Z d

g!1
V L dpdisp

¼
Z pPh;G

psat

V G dp �
Z dþDr cos u

g!1
V G dpdisp:

Assuming the liquid and the gas to be incompressible,

we obtain

V LðpPh;L � psatÞ � V Lpdisp;Ph;L

¼ V GðpPh;G � psatÞ � V Gpdisp;Ph;G: ð27Þ

The pressures pPh;L at the liquid interface and pPh;G at

the vapour interface are connected by Eq. (19), in which

the interface pressures pPh;L and pPh;G now replace the

pressures pL and pG of the homogeneous phases. Elim-

ination of pPh;L in Eq. (27) and introducing the density q
instead of the molar volume V ¼ M=q with molar mass

M, we obtain the Kelvin equation for the gas-side

pressure

pPh;G ¼ psatðTPhÞ �
qG

qL � qG

rK þ pdisp;Ph;G: ð28Þ

Correspondingly, elimination of pPh;G in Eq. (27)

yields the Kelvin equation for the liquid-side pressure

pPh;L ¼ psatðTPhÞ �
qL

qL � qG

rK þ pdisp;Ph;L: ð29Þ

It should be noted that the dispersion pressures

pdisp;Ph;G and pdisp;Ph;L on both sides of the r-interface are

negative for a wetting liquid, as stated before.

The Kelvin equations, Eqs. (28) and (29), hold for

local equilibrium of any evaporating system indepen-

dently if it is open or closed. For a spherical bubble

(closed system) of constant curvature K in a liquid far-

off from the solid wall we obtain the well known rela-

tions

pPh;G ¼ psatðTPhÞ �
qG

qL � qG

rK ð30Þ

and

pPh;L ¼ psatðTPhÞ �
qL

qL � qG

rK: ð31Þ

The liquid pressure pPh;L and the gas pressure pPh;G at the

temperature TPh are lower than the saturation pressure

Tsat(TPh), Fig. 6. For a given saturation temperature Tsat

the liquid must be superheated by DT ¼ TPh � Tsat for

vapour bubbles to exist.
Fig. 5. Local phase equilibrium between liquid L with gas G

and r-phase.
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5. Gas and liquid pressures apart from the interface

If evaporation occurs, the gas pressure pG and the

liquid pressure pL apart from the curved interface d, Fig.

1, differ from the interface pressures pPh;L and pPh;G. In

the bulk of the gas, because of the intermolecular forces,

the gas pressure pG is slightly lower than the interfacial

pressure pPh;G, the difference pPh;G � pG being the driving

force for evaporation. As follows from the kinetic theory

of gases we have (see for example [16]):

pPh;G � pG ¼ _qq
2 � f

2f
½2pRTsatðpGÞ�

DhV

1=2

; ð32Þ

with the heat flux _qq, the condensation coefficient f and

the enthalpy of evaporation DhV. Only for vanishing

heat fluxes _qq ¼ 0, we have pPh;G ¼ pG. In the micro-

region, where heat fluxes are very high and of the order

107 W/m2 the pressure difference pPh;G � pG is not neg-

ligible as the following example in Section 6.2 shows.

With the aid of the Kelvin equation (28), together

with Eq. (24) we also obtain the pressure pLðn; gÞ in the

liquid film. Proceeding from the interface g ¼ dðnÞ where

we have pPh;L ¼ pPh;Lðn; g ¼ dÞ in the direction g and

neglecting gravity in the very thin liquid film, we have

pLðn; gÞ � pPh;L ¼
Z n;g

n;g¼d

opL

og
og ¼

Z n;g

n;g¼d

opdisp

og
og:

With Eq. (11) we find

pLðn; gÞ ¼ pPh;L þ Adisp;SL

g3
� Adisp;SL

d3
: ð33Þ

The difference of the two dispersion pressures de-

scribes the pressure increase inside the liquid because of

the action of dispersion forces on the liquid column of

height d � g. Adisp;SL is the dispersion constant for the

solid–liquid interaction upon this liquid column. As

follows from the combining rules [9] we have

Adisp;SL6p ¼ ASL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ASSALL

p
;

which is positive for the wetting liquids considered here.

Combining Eq. (33) with Eqs. (20) and (29) yields the

pressure distribution in the liquid film

pLðn; gÞ ¼ psatðTPhÞ �
qL

qL � qG

rK þ Adisp;Ph;L

d3

þ Adisp;SL

g3
� Adisp;SL

d3
; ð34Þ

whereas the dispersion constant Adisp;SL is positive,

Adisp;Ph;L is negative as follows from Eq. (21).

6. Application examples

6.1. The spreading of thin liquid films at a vertical wall

As an example for the application of the previous

equations we consider a liquid that fully wets and

spontaneously spreads on a surface, as shown in Fig. 7.

Near the vertical wall a thin film forms above the in-

trinsic meniscus. The intrinsic meniscus is that part of

the meniscus so far away from the solid wall that dis-

persion between solid and liquid become negligible. We

want to determine the film thickness d as function of

liquid height H.

At a given position g inside the liquid film the pres-

sure decreases with height n according to

pLðn; gÞ � pLðn0; gÞ ¼ �qLgðn � n0Þ: ð35Þ

As Fig. 7 shows the wall distance is g ¼ dðnÞ and hence

from Eq. (34) under the assumption that we are in the

Fig. 6. Liquid and vapour pressure for spherical bubble, cur-

vature K.

Fig. 7. Wetting liquid in contact with solid wall.

4722 K. Stephan / International Journal of Heat and Mass Transfer 45 (2002) 4715–4725



region of the extended meniscus where the curvature is

negligible:

pLðn; gÞ ¼ pLðn; g ¼ dÞ ¼ psatðTPhðnÞÞ þ
Adisp;Ph;L

d3
: ð36Þ

As position n0 we choose in Eq. (34) that of the intrinsic

meniscus so that the dispersion pressure is negligible,

d ¼ dðn0Þ ! 1. Then, because of g ¼ dðnÞ the liquid

pressure at position n0 is

pLðn0; gÞ ¼ pLðn0; g ¼ dÞ ¼ psatðTPhðn0ÞÞ þ
Adisp;SL

d3
: ð37Þ

Because of Adisp;Ph;L � 0 and Adisp;SL � 0, under iso-

thermal conditions TPhðnÞ ¼ TPhðn0Þ the upper pressure

pLðn; g ¼ dÞ, Eq. (36), is smaller than the bottom pres-

sure pLðn0; g ¼ dÞ, Eq. (37). The pressure difference is

balanced out by the hydrostatic pressure of the climbing

liquid film. Cooling of the upper part of the liquid film

or heating of the bottom part leads to an increase of the

pressure difference and thus to thicker liquid films at the

same position n.

With Eqs. (36) and (37), we find from Eq. (35) under

the assumption of isothermal conditions the film thick-

ness d as function of the liquid height H ¼ n � n0:

d ¼ Adisp;SL � Adisp;Ph;L

qLgH

� �1=3

: ð38Þ

In all the literature known to the author we find in-

stead d ¼ ðA=ðqLgHÞÞ1=3
wherein A in terms of our no-

menclature is either taken as Adisp;SL or as �Adisp;S;L;G.

The dispersion forces support a thin liquid film

against gravity above the intrinsic meniscus. For refrig-

erant R114 we obtain with Adisp;SL ¼ 6:78 
 10�21 J,

Adisp;Ph;L ¼ �3:39 
 10�21 J, TPh ¼ 302:63 K at psatðTPhÞ ¼
0:247 MPa and qL ¼ 1440:8 kg/m3 a film thickness of

d ¼ 8:96 
 10�9 m4=3=H1=3. At a height of 0.1 m the film

thickness is d ¼ 1:98 
 10�8 m ¼ 19:8 nm, the bottom

dispersion pressure is pdisp;SL ¼ Adisp;SL= d3 ¼ 873 Pa, and

the upper dispersion pressure pdisp;Ph;L ¼ Adisp;Ph;L=d
3 ¼

�437 Pa.

As another example we consider the spreading of a

thin liquid film of 4Helium along a vertical CaF2-wall.

With Adisp;SL ¼ 3:39 
 10�22 J, Adisp;Ph;G ¼ �2:3 
 10�22 J

for a temperature of 1.38 K we find from Eq. (38) with

qL ¼ 145 kg/m3 a film thickness d ¼ 15:9 nm at a height

of H ¼ 0:1 m, and d ¼ 3:4 nm at H ¼ 10 m, slightly

different from the value d ¼ 2:8 nm determined by Sa-

bisky and Anderson [17] from their experiments. At

H ¼ 0:01 m they obtained d ¼ 21:5 nm instead of d ¼ 34

nm from Eq. (38). As pointed out by Israelachvili [9]

such a deviation might be due to retardation effects

observed for liquid films thicker than 6 nm and ne-

glected in our analysis. As we can see from Eqs. (36) and

(37) temperature differences between bottom and upper

part of the film in the experiment might also cause de-

viations.

6.2. Liquid and vapour pressure at the interface of vapour

bubbles in nucleate boiling

As a further example we consider a vapour bub-

ble of R114 at a given time t during nucleate boiling

on a copper wall. At this time the curvature of the

bubble cap shall be Kcap ¼ 2 
 104 m�1 corresponding

to a cap diameter of 0.2 mm. The outside liquid pres-

sure is assumed to be 0.2470 MPa, corresponding to

a saturation temperature of 302.63 K. The wall tem-

perature shall be DT ¼ 4:96 K higher, TW ¼ 307:59 K.

For this example pressure and temperature at a liquid–

vapour interface had to be determined by solving

the balance equations of mass, momentum and en-

ergy. Details of the numerical solution are given else-

where [5]. As a result the liquid pressure and vapour

pressure pPh;L, pPh;G were obtained using the previous

equations.

Fig. 8 shows the variation of these pressures as a

function of the radial co-ordinate n. As we can see the

interface liquid pressure pPh;L decrease from 0.2470 MPa

at large values n to about 0.1 MPa towards the bubble

centre because of the strong change of curvature. The

liquid pressure pPh;L undergoes a minimum because the

large curvature change in the micro-region first leads to

a decrease of the pressure. For small values n � nad close

to the zone where the liquid film is adsorbed and where

the curvature approaches zero, see Fig. 1, the dispersion

forces cause an enhancement of liquid pressure. Under

the assumption of a Gibbs interface, Dr ¼ 0, it ends up

in the adsorbed zone with a value of 0.24721 MPa,

slightly above the outside liquid pressure of 0.2470 MPa.

The thickness of the adsorbed liquid area was deter-

mined to dad ¼ 4:85 nm. If we assume instead a r-phase

Fig. 8. Liquid and vapour pressure pPh;L, pPh;G along the in-

terface.
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of thickness Dr ¼ 1 nm we obtain dad ¼ 3:6 nm, a liquid

pressure in the adsorbed zone of pPh;L ¼ 0:2144 MPa,

whereas the gas pressure is as before pPh;G ¼ 0:24721

MPa. The liquid pressure differs from that obtained

under the assumption of a Gibbs interface and clearly

indicates that such an assumption leads to erroneous

results when liquid films near the solid wall are ex-

tremely thin.

The strong curvature of the interface is maintained

on the vapour side by a strong increase of pressure as the

curve for pPh;G in Fig. 8 indicates. It approaches slightly

different end values in the adsorption zone and at the

bubble cap, where the pressure is a little lower due to the

small hydrostatic pressure drop.

Though the liquid pressure pPh;L ¼ pLðn; g ¼ dÞ de-

creases with sufficiently small values n � nad, liquid is

nevertheless flowing from the outside region towards the

interface, because pLðn; gÞ at different positions g parallel

to the wall decreases towards the bubble centre as shown

in Fig. 9. In this figure under the assumption of a Gibbs

interface, Dr ¼ 0, the pressure pL inside the liquid film is

plotted for different values g as a function of the radial

co-ordinate n � nad. Close to the wall at g ¼ dad we ob-

serve a steep pressure gradient opL=on, whereas farther

away, for instance at position g ¼ 3dad, the gradient

opL=on becomes smaller. At the interface g ¼ d with

pressure pPh;L, dashed line in Fig. 9, the gradient opL=on,

as the solid lines in Fig. 9 show, is still positive: Liquid is

flowing towards the interface, even in the region where

the interface pressure pPh;L decreases in the radial di-

rection n � nad. This becomes clearly visible in the upper

part of Fig. 9 showing the velocity field inside the liquid

film.

7. Concluding remarks

As shown before dispersion forces are of high im-

portance in nucleate boiling heat transfer processes.

They are long range interaction forces between the solid

wall and the liquid film, and lower the pressure at the

vapour liquid interface. The chemical potential of the

liquid phase, decisive for phase equilibria is therefore

different from that of a system where dispersion forces

are negligible; it contains an additional term for the

dispersion forces. The Kelvin-equation derived from the

condition of equal chemical potentials for liquid and

vapour delivers the pressures at the liquid–vapour in-

terface. They depend on interface temperature Tph cur-

vature of the interface and the dispersion pressure. For a

given interface temperature Tph both pressures are lower

than the saturation pressure psatðTPhÞ of a flat surface,

free of dispersion forces, the reduction of the liquid

pressure being much higher than that of the vapour

pressure because of the higher liquid density. As a nu-

merical example shows, the reduction of the liquid

pressure at the interface can be of the order of half the

saturation pressure psatðTPhÞ. In contrast to this, the

vapour pressure at the interface increases, but less than

the liquid pressures decreases. The vapour pressure un-

dergoes a maximum, because two effects overlap: The

interface temperature TPh increases towards the bubble

centre, thus causing an increase of vapour pressure,

whereas the capillary and dispersion forces lead to a

reduction of the vapour pressure.

A generalisation of these results for liquid and va-

pour interface pressure including dispersion forces with

the aid of correlations seems at least at present impos-

sible because of the many parameters involved.
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